作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
2 中国科学院大学材料与光电研究中心, 北京 100049
在激光惯性约束核聚变(ICF)实验中,为了满足打靶光束动态聚焦的需求,提出了通过时空复合激光预放大系统实现动态聚焦的技术路线。基于菲涅耳衍射传输理论,利用快速傅里叶变换的数值模拟方法,建立了时空复合光束的传输模型,分析了滤波器小孔尺寸、软化因子、消光比以及相位差等多种因素对时空复合光束传输效果的影响,并进行了实验验证。初步实验结果与模拟结果较为吻合,这可有效支撑对时空复合光束各项传输参数的优化,为后续时空复合光束的传输放大提供指导。所提出的技术下一步将用于高功率激光装置预放段的时空复合系统,支持高功率激光装置动态聚焦打靶实验研究。
激光光学 时空复合 预放系统 动态聚焦 光束传输 激光放大器 
中国激光
2021, 48(24): 2405001
Tiancheng Yu 1,2Jiangtao Guo 3,4Gang Xia 3,4Xiang Zhang 1,2[ ... ]Xiao Yuan 1,2,†
Author Affiliations
Abstract
1 School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
2 Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Laboratory of Modern Optical Technologies of Ministry of Education, Suzhou 215006, China
3 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
The output performances of a bidirectional ring amplifier with twin pulses are demonstrated. Compared to the extraction efficiency of 32% for single-pulse injection, the extraction efficiency of stored energy for twin-pulse injection with bidirectional propagation is increased to 60%. The maximum output energies of the twin pulses are 347 mJ and 351 mJ, and the output energy of a single pulse is only 373 mJ under the same amplifier operating conditions. The experimental results show that the bidirectional ring amplifier with twin pulses can achieve a higher extraction efficiency of stored energy at a lower operating fluence, and has potential applications in high-power and high-energy laser facilities.
lasers pulsed lasers laser amplifier ring 
High Power Laser Science and Engineering
2019, 7(2): 02000e30
Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
A high-power, Joule-class, nanosecond temporally shaped multi-pass ring laser amplifier system with two neodymium-doped phosphate glass (Nd:glass) laser heads is demonstrated. The laser amplifier system consists of three parts: an all-fiber structure seeder, a diode-pumped Nd:glass regenerative amplifier and a multi-pass ring amplifier, where the thermally induced depolarization of two laser heads is studied experimentally and theoretically. Following the injection of a square pulse with the pulse energy of 0.9 mJ and pulse width of 6 ns, a 0.969-J high-energy laser pulse at 1 Hz was generated, which had the ability to change the waveform arbitrarily, based on the all-fiber structure front end. The experimental results show that the proposed laser system is promising to be adopted in the preamplifier of high-power laser facilities.
depolarization compensation laser amplifier neodymium laser ring laser 
High Power Laser Science and Engineering
2019, 7(1): 010000e8
Gang Xia 1,2,3Wei Fan 1,2Dajie Huang 1,2He Cheng 1,2[ ... ]Xiaoqin Wang 1,2,3
Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
In order to improve the damage threshold and enlarge the aperture of a laser beam shaper, photolithographic patterning technology is adopted to design a new type of liquid crystal binary mask. The inherent conductive metal layer of commercial liquid crystal electro-optical spatial light modulators is replaced by azobenzene-based photoalignment layers patterned by noncontact photolithography. Using the azobenzene-based photoalignment layer, a liquid crystal binary mask for beam shaping is fabricated. In addition, the shaping ability, damage threshold, write/erase flexibility and stability of the liquid crystal binary mask are tested. Using a 1 Hz near-IR (1064 nm) laser, the multiple-shot nanosecond damage threshold of the liquid crystal mask is measured to be higher than $15~\text{J}/\text{cm}^{2}$. The damage threshold of the azobenzene-based photoalignment layer is higher than $50~\text{J}/\text{cm}^{2}$ under the same testing conditions.
high damage threshold laser beam shaper liquid crystal photoalignment 
High Power Laser Science and Engineering
2019, 7(1): 010000e9
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 National Laboratory on High Power Laser and Physics, Shanghai 201800, China
We demonstrate a laser diode end-pumped helium gas-cooled multislab Nd:glass laser amplifier. The design and thermal management of the proposed laser amplifier are discussed. The thermally induced wavefront aberration of the slabs was also measured and compared with simulation results. A small-signal single-pass longitudinal gain of 1.8 was measured with a pump energy of 7.3 J. With an injected seed energy of 0.6 mJ, the output energy from the amplifier reached 0.5 J at 0.2 Hz and 0.43 J at 0.5 Hz in a multipass extraction geometry, thus demonstrating the feasibility of diode-pumped, high-energy lasers with direct gas cooling.
laser diode gas cooling Nd:glass wavefront aberration laser amplifier. 
High Power Laser Science and Engineering
2018, 6(2): 02000e15
汪超 1,2韦辉 1周丽 1郭江涛 1,2[ ... ]李学春 1
作者单位
摘要
1 上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
2 中国科学院大学, 北京 100049
搭建了一台中等重复频率、高峰值功率的Nd∶YAG激光器。激光器主要包括三部分:单纵模全光纤种子源、LD抽运的Nd∶YAG再生放大器和氙灯抽运的Nd∶YAG功率放大器。该系统获得了平均功率为12 W、重复频率为10 Hz、单脉冲能量为1.2 J、脉冲宽度为3 ns的激光输出, 工作波长为1064 nm, 输出光束口径为10 mm, 95%的能量在600 μrad范围内, 近场光强近平顶分布, 近场光强调制度小于1.2, 时间波形近似方波, 能量稳定性均方根值小于1.4%。
激光器 高峰值功率 激光放大器 纳秒脉冲 可调脉冲波形 
中国激光
2017, 44(8): 0801008
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Science, Beijing 100049, China
A 95 W Nd:YAG laser system pumped by a vertical cavity surface emitting laser (VCSEL) array is described. The laser contains an all-fiber-based seeder, an Nd:YAG regenerative amplifier, and a four-pass amplifier. The laser operates at 300 Hz with energies up to 317 mJ. The beam has a top-hat intensity distribution. The temporal pulse shape is flat in time, and the pulse width can be adjusted in the range of 2–6 ns.
140.3280 Laser amplifiers 140.3295 Laser beam characterization 140.6810 Thermal effects 140.7260 Vertical cavity surface emitting lasers 
Chinese Optics Letters
2016, 14(12): 121402
作者单位
摘要
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
3 Research and Development Center, Yangtze Optical Fibre and Cable Co., Ltd., Wuhan 430074, China
ultra violet (UV) fiber doping content mechanical performance tensile strength 
Frontiers of Optoelectronics
2009, 2(3): 339

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!